Standardized Rotator Cuff Repair. Classification of Fundación Santa Fe de Bogotá

Guido Fierro, Mercedes Salas, Andrés Jiménez, Jorge Rojas, Juan Carlos González
Shoulder and Elbow Section, Department of Orthopedics and Traumatology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia

ABSTRACT
Rotator cuff surgery has become more popular in recent years, transitioning from an open technique to arthroscopic surgery. Although multiple techniques for bone fixation have been described, the steps to perform this repair have not been standardized, leading to inconsistencies and heterogeneity in the outcomes. This article proposes a new classification of rotator cuff injuries that will help surgeons make decisions during arthroscopic rotator cuff repair surgery.

Keywords: Rotator cuff repair; arthroscopy; classification; surgery.
Level of Evidence: IV

INTRODUCTION
Rotator cuff surgery has grown in popularity in recent years, transitioning from an open procedure to arthroscopic treatment in the majority of patients.1 Multiple techniques for bone fixation have been described,2-5 but the order and steps for repair have not been standardized, leading to inconsistencies and heterogeneity in repair outcomes.

This article proposes a new classification of rotator cuff injuries that will allow surgeons to make decisions during arthroscopic rotator cuff repair surgery.

CURRENT CLASSIFICATIONS
The current classifications of rotator cuff injury are based on its morphology, size, number of tendons affected, location of the tear, degree of atrophy, and degree of compromise in the insertion (partial/complete) of the tendon, and have been used as a reference to compare results between studies.6-13 These classifications described do not guide the surgeon during the operation, they do not allow the repair to be standardized for the vast majority of patients, and they do not describe the degree of repair achieved at the end of the surgery, since, in many cases, total repair of the defect is not possible.
Classification of Fundación Santa Fe de Bogotá (FSFB)

The FSFB classification seeks to standardize rotator cuff repair by providing the orthopedist with management guidance according to the type of injury and describing the degree of repair achieved (Table). It is based on two principles. The first is the repair of the limits of the rotator interval (proximal limit: most anterior portion of the supraspinatus tendon and distal limit: most superior portion of the subscapularis tendon). The second is to achieve an anatomic rotator cuff repair (tension-free tendon repair without folds plus converging sutures in the rotator cuff traction vector; from posteromedial to anterolateral).14,15

Table. Classification of Fundación Santa Fe de Bogotá for complete rotator cuff injuries

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>All the tendons are inserted into the bone</td>
<td>Do not repair/End of surgery</td>
</tr>
<tr>
<td>I</td>
<td>Tendon disinserted from bone</td>
<td>Bring the tendon directly to the bone. Use anchors or tunnels</td>
</tr>
<tr>
<td></td>
<td>Anteroposterior diameter greater than medial-lateral diameter</td>
<td>Does not require convergence sutures</td>
</tr>
<tr>
<td></td>
<td>Crescent-shaped lesion/No apex</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Identifiable apex</td>
<td>Requires convergence sutures</td>
</tr>
<tr>
<td></td>
<td>Proximal rotator interval limit identifiable and inserted into the bone</td>
<td>Posteromedial to anterolateral or anteromedial to posterolateral convergence sutures to close the injury apex</td>
</tr>
<tr>
<td></td>
<td>Then repair as a type I lesion</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Injury to the proximal limit of the rotator interval</td>
<td>Fix the apex of the proximal limit to the most superior and lateral part of the subscapularis or to its insertion zone in the most anterior portion of the greater tuberosity</td>
</tr>
<tr>
<td></td>
<td>The distal rotator interval limit is inserted into the bone</td>
<td>Then repair as a type II lesion</td>
</tr>
<tr>
<td></td>
<td>Then repair as a type I lesion</td>
<td>Then repair as a type I lesion</td>
</tr>
<tr>
<td>IV</td>
<td>Injury to the distal limit of the rotator interval</td>
<td>Fix the apex of the distal limit to the lesser tuberosity</td>
</tr>
<tr>
<td></td>
<td>Then repair as a type III lesion</td>
<td>Then repair as a type II lesion</td>
</tr>
<tr>
<td></td>
<td>Then repair as a type II lesion</td>
<td>Then repair as a type I lesion</td>
</tr>
<tr>
<td></td>
<td>Then repair as a type I lesion</td>
<td></td>
</tr>
</tbody>
</table>

The FSFB classification does not refer to the fixation method used (single or double row, anchors or bone tunnels) and is considered an intraoperative classification, which can be extrapolated to pre-surgical magnetic resonance imaging findings.

During surgery, it is possible to classify injuries into five types according to their characteristics and the arthroscopic repair that should be performed. Type 0 injuries refer to a rotator cuff without injury or with all tendons repaired, that is, the injury has already been repaired. Complete repairs with an anchor or repairs to the medial half of the footprint are considered type 0 injuries. An injury is classified as type I when the supraspinatus or infraspinatus tendon is not attached to the greater tuberosity, the anterior portion of the supraspinatus tendon is intact, and there is no apex in the area of tendon injury. In type I lesions, the anteroposterior diameter is usually larger than the mediolateral diameter and they have a crescent shape. The treatment of type I injuries involves bringing the tendon to the bone, and fixing it. It does not require additional convergences or releases (Figure 1).
Type II injuries have an apex in the tendon lesion and the limits of the rotator interval remain intact. Treatment of type II lesions is based on convergence from posteromedial to anterolateral, which converts the lesion to type I and allows it to be repaired as if it were type I (Figure 2).

Type III injuries are those with a tear in the proximal limit of the rotator interval and with the distal limit attached to the bone. Treatment consists of fixation of the proximal limit, then, it is treated as a type II injury. If there is no apex in the lesion after fixation of the proximal limit, the injury is treated as type I (Figure 3). A type IV lesion is considered when there is a tear of the distal limit of the rotator interval and also isolated injuries to the subscapularis tendon. Management of type IV injuries consists of repairing the subscapularis tendon to the lesser tuberosity and then repairing it as a type III injury (Figure 4). There is not enough evidence to support the separation of the supraspinatus tendon from the subscapularis when they are attached.\textsuperscript{16}
Surgical procedure
To systematically repair the rotator cuff, surgery can be divided into two components: “non-cuff” and “rotator cuff”.

“Non-cuff” components of rotator cuff surgery
The “non-cuff” component refers to all the different procedures for bringing the tendon to the bone. Among the “non-cuff” components, we find the following procedures:

- Tenotomy or tenodesis of the long head of the biceps, includes all types of tenodesis described. The decision between performing a tenotomy or a tenodesis depends on the surgeon’s preference for each patient.17-19
  - Rotator interval release, which includes resection of the capsule and bursa in the anterior region of the rotator interval, allows better access and facilitates procedures in FSFB type III and IV lesions.20
  - Synovitis associated with rotator cuff injuries may increase the likelihood of postoperative stiffness; therefore, in patients with synovitis, we recommend partial or total synovectomy. 21
  - The joint capsule plays a fundamental role in rotator cuff disease. Its release allows an excursion of the tendon to the footprint with less tension.22 For type II lesions, we recommend superior, posterior, and inferior capsulotomy and, for type IV lesions, anterior capsule release.
- The subacromial, subdeltoid, and subscapular bursae have a protective and nutritious function, and their dissection is required to perform cuff repair surgery. As a result, we urge that the amount of bursa resected be as minimal as possible unless the patient has extensive bursitis, in which case the release should be substantial.23

- In order to allow the excursion of the retracted tendon to the footprint, it must be released at the spine of the scapula in type II injuries and at the lateral aspect of the coracoid, at the level of the coracohumeral ligament, in type IV injuries.

- The decision to modify the shape of the acromion and the amount of acromion resected is chosen based on the patient. There is no solid evidence to support the routine use of acromioplasty in patients with rotator cuff injuries undergoing repair surgery.24

- The objective of the debridement of the cuff’s footprint on the humerus is to provide a bleeding bed in which to repair the tendon, as this promotes healing. In some published articles, a perforation of the footprint with more than 1 cm depth and less than 2 mm of diameter is suggested for each perforation to promote tendon healing. However, recent studies have not found a statistically significant difference from the above.25

- In patients with symptomatic acromioclavicular osteoarthritis, distal clavicle resection surgery is associated with rotator cuff repair.26

Once the “non-cuff” component of rotator cuff surgery has been completed, we proceed with the “rotator cuff” component, which consists of planning its repair and fixation to the bone, depending on the characteristics of the lesion.

**DISCUSSION**

Recent anatomy studies have shown, in more detail, the form of insertion of the rotator cuff tendons, which has allowed us to understand the patterns of retraction and progression of the disease.27 The distribution of the rotator cuff fibers is not exclusively medial to lateral, but rather fan-shaped with a posteromedial to anterolateral distribution. The repair must reproduce the anatomy of the cuff, so the direction of convergence must be from posteromedial to anterolateral before attaching the tendon to the bone.14,15

Numerous studies have been published on techniques for fixing the injured tendon to the bone, but there are no studies that standardize the repair sequence of the rotator cuff tendon, partly because of the extensive variation in tear morphologies and the surgeon’s level of skill.2-5 The current classifications on which the available studies are based do not guide the surgeon during the operation, resulting in very variable decisions made during the operation.6-13 For this reason, the external validity of the studies is low, given that patients with the same type of injury are treated differently, with varying results from one center to another. Integrative classifications have been described, such as the one proposed by the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS), in which the classifications described above are grouped in order to better describe the injury,13 but it does not guide the surgeon during the operation or standardize the way in which rotator cuff repair should be performed.

The FSFB classification emerged in response to the need for a classification that would allow for a systematic and standardized surgical approach to rotator cuff injuries. This classification was designed to guide the surgeon during rotator cuff repair in a homogeneous and standardized way based on the morphology and involvement of the tendons in rotator cuff injuries.

**CONCLUSION**

The FSFB classification, which is based on the morphology of the injury and tendon involvement, aims to provide the surgeon with a repair process that is simple and standardized, and thus guarantees external validity, allowing the results of the medical literature to be homogenized.

Conflict of interest: The authors declare no conflicts of interest.
REFERENCES


