Rugosidad óptima de un implante para generar la osteointegración y la fijación biológica

Contenido principal del artículo

Carlos Alberto Vega
Favio Moruno
Diego Veneri

Resumen

Introducción: El uso de superficies rugosas para la fijación biológica en implantes es una alternativa que se está usando cada vez con más frecuencia. El objetivo del estudio fue determinar la rugosidad óptima de un implante endomedular que permita la osteointegración y la consecuente fijación biológica, mediante la proyección térmica por arco utilizando fémures de conejos como modelo biológico receptor.
Materiales y Métodos: Se implantaron sistemas endomedulares cilíndricos con recubrimiento rugoso de titanio y distinto rango de rugosidad en fémures de seis conejos (unilaterales) para determinar dónde se produce una mayor osteointegración. El proceso de osteointegración se evaluó con radiografías mensuales y estudios de anatomía patológica del fémur del espécimen.
Resultados: No se produjo migración o subsidencia en ninguno de los implantes. Todos los fémures mostraron signos de osteointegración radiográfica. Se demostró la presencia de neoformación ósea establecida alrededor de todos los implantes. Sin embargo, no se pudo realizar un testeo mecánico para evaluar la fuerza de adhesión al hueso.
Conclusión: Las superficies con rugosidades >100 µm proporcionan una respuesta biológica favorable con una unión directa entre la superficie de los implantes y el hueso.

Descargas

La descarga de datos todavía no está disponible.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Vega, C. A., Moruno, F., & Veneri, D. (2024). Rugosidad óptima de un implante para generar la osteointegración y la fijación biológica. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 89(5), 507-518. https://doi.org/10.15417/issn.1852-7434.2024.89.5.1930
Sección
Investigación Básica
Biografía del autor/a

Carlos Alberto Vega, Servicio de Ortopedia y Traumatología, Hospital Central de San Isidro “Dr. Melchor Ángel Posse”, San Isidro, Buenos Aires, Argentina

Servicio de Ortopedia y Traumatología, Hospital Central de San Isidro “Dr. Melchor Ángel Posse”, San Isidro, Buenos Aires, Argentina

Favio Moruno, Servicio de Ortopedia y Traumatología, Hospital Zonal General de Agudos “Dr. Carlos Bocalandro”, Tres de Febrero, Buenos Aires, Argentina

Servicio de Ortopedia y Traumatología, Hospital Zonal General de Agudos “Dr. Carlos Bocalandro”, Tres de Febrero, Buenos Aires, Argentina

Diego Veneri, Servicio de Ortopedia y Traumatología, Hospital Zonal General de Agudos “Dr. Carlos Bocalandro”, Tres de Febrero, Buenos Aires, Argentina

Servicio de Ortopedia y Traumatología, Hospital Zonal General de Agudos “Dr. Carlos Bocalandro”, Tres de Febrero, Buenos Aires, Argentina

Citas

1. Park JB. Orthopedic prosthesis fixation. Ann Biomed Eng 1992;20(6):583-94. https://doi.org/10.1007/BF02368607

2. Yamada H, Yoshihara Y, Henmi O, Morita M, Shiromoto Y, Kawano T, et al. Cementless total hip replacement: past, present, and future. J Orthop Sci 2009;14(2):228-41. https://doi.org/10.1007/s00776-008-1317-4

3. Bobyn JD, Tanzer M, Miller JE. Fundamental principles of biologic fixation. En: Morrey BF (ed). Reconstructive
surgery of the joints. New York, NY: Churchill Livingstone; 1996, p. 75-94.

4. Svehla M, Morberg P, Zicat B, Bruce W, Sonnabend D, Walsh WR. Morphometric and mechanical evaluation of
titanium implant integration: comparison of five surface structures. J Biomed Mater Res 2000;51(1):15-22.
https://doi.org/10.1002/(sici)1097-4636(200007)51:1<15::aid-jbm3>3.0.co;2-9

5. Brånemark R, Brånemark PI, Rydevik B, Myers RR. Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 2001;38(2):175-81. PMID: 11392650

6. Daugaard H, Elmengaard B, Bechtold JE, Jensen T, Soballe K. The effect on bone growth enhancement of implant coatings with hydroxyapatite and collagen deposited electrochemically and by plasma spray. J Biomed Mater Res A 2010;92(3):913-21. https://doi.org/10.1002/jbm.a.32303

7. Bobyn JD, Stackpool GJ, Hacking SA, Tanzer M, Krygier JJ. Characteristics of bone ingrowth and interface
mechanics of a new porous tantalum biomaterial. J Bone Joint Surg Br 1999;81(5):907-14. https://doi.org/10.1302/0301-620x.81b5.9283

8. Hench LL, Best S. Ceramics, glasses and glass-ceramics. En: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE
(eds). Biomaterials science. An introduction to materials in medicine. 2a ed. Philadelphia: Elsevier Inc.; 2004, p.153-70.

9. Fyhrie DP, Carter DR, Schurman DJ. Effects of ingrowth, geometry, and material on stress transfer under porouscoated hip surface replacements. J Orthop Res 1988;6(3):425-33. https://doi.org/10.1002/jor.1100060314

10. Cooley DR, Van Dellen AF, Burgess JO, Windeler AS. The advantages of coated titanium implants prepared by
radiofrequency sputtering from hydroxyapatite. J Prosthet Dent 1992;67(1):93-100. https://doi.org/10.1016/0022-3913(92)90057-h

11. Davies JE. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007;28(34):5058-67.
https://doi.org/10.1016/j.biomaterials.2007.07.049

12. Spector M. Bone ingrowth into porous metals. En: Williams DF (ed). Biocompatibility of orthopaedic implants.
Florida: CRC Press; 1982, p. 89-128.

13. Haddad RJ Jr, Cook SD, Thomas KA. Biological fixation of porous-coated implants. J Bone Joint Surg Am
1987;69(9):1459-66. PMID: 3326881

14. Fernández J, Gilemany JM, Gaona M. La proyección térmica en la obtención de recubrimientos biocompatibles
ventajas de la proyección térmica por alta velocidad (HVOF) sobre la proyección térmica por plasma atmosférico
(APS). CPT Centro de Proyección Térmica. Departamento de Ingeniería Química y Metalúrgica. Universidad de
Barcelona; 2005, vol. 13, p. 16-39. https://doi:10.5821/sibb.v13i1.1726

15. Hara D, Nakashima Y, Sato T, Hirata M, Kanazawa M, Kohno Y, et al. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique. Mater Sci Eng C Mater Biol Appl 2016;59:1047-52. https://doi.org/10.1016/j.msec.2015.11.025

16. Hulbert SF, Cooke FW, Klawitter JJ, Leonard RB, Sauer BW, Moyle DD, et al. Attachment of prostheses to the
musculoskeletal system by tissue ingrowth and mechanical interlocking. J Biomed Mater Res 1973;7(3):1-23.
https://doi.org/10.1002/jbm.820070303

17. Klawitter JJ, Weinstein AM. The status of porous materials to obtain direct skeletal attachment by tissue ingrowth. Acta Orthop Belg 1974;40:755-65. PMID: 4469737

18. Li J, Liao H, Fartash B, Hermansson L, Johnsson T. Surface-dimpled commercially pure titanium implant and bone ingrowth. Biomaterials 1997;18(9):691-6. https://doi.org/10.1016/s0142-9612(96)00185-8

19. Götz HE, Müller M, Emmel A, Holzwarth U, Erben RG, Stangl R. Effect of surface finish on the osseointegration of laser-treated titanium alloy implants. Biomaterials 2004;25:4057-64. https://doi:10.1016/j.biomaterials.2003.11.002