Magnetically-Controlled Growing Rods. Outcomes and Complications
Main Article Content
Abstract
Materials and Methods: The aim of this study was to retrospectively analyze a series of 37 cases treated with MAGEC between 2014 to 2019. We performed a retrospective study and divided the population into two groups: GI (primary procedures with MAGEC) and GII (conversions from traditional system to MAGEC).
Results: The study included 19 girls and 18 boys with a mean age of 8 years and a variety of etiologies. Theaverage postoperative follow-up time for Group I (n=28) and Group II (n=9) was 3.6 years. The average preoperative angular value (AV) of scoliosis was 64° (39°-101°) and kyphosis 51° (7°-81°). The postoperative scoliosis AV was 41° (17°-80°) and kyphosis 34° (7°-82°). We found 2 rod ruptures and one proximal union kyphosis, two proximal screw loosenings, one MAGEC distraction system failure, and one surgical site infection.
Conclusions: Although our preliminary results are short term, they suggest that MAGEC could be an effective method.
Downloads
Metrics
Article Details
Manuscript acceptance by the Journal implies the simultaneous non-submission to any other journal or publishing house. The RAAOT is under the Licencia Creative Commnos Atribución-NoComercial-Compartir Obras Derivadas Igual 4.0 Internacional (CC-BY-NC.SA 4.0) (http://creativecommons.org/licences/by-nc-sa/4.0/deed.es). Articles can be shared, copied, distributed, modified, altered, transformed into a derivative work, executed and publicly communicated, provided a) the authors and the original publication (Journal, Publisher and URL) are mentioned, b) they are not used for commercial purposes, c) the same terms of the license are maintained.
In the event that the manuscript is approved for its next publication, the authors retain the copyright and will assign to the journal the rights of publication, edition, reproduction, distribution, exhibition and communication at a national and international level in the different databases. data, repositories and portals.
It is hereby stated that the mentioned manuscript has not been published and that it is not being printed in any other national or foreign journal.
The authors hereby accept the necessary modifications, suggested by the reviewers, in order to adapt the manuscript to the style and publication rules of this Journal.
References
Statement, SRS Growing Spine Committee, 2015. Spine Deform 2015;3(2):107. https://doi.org/10.1016/j.jspd.2015.01.002
2. Williams BA, Matsumoto H, McCalla JD, Akbarnia BA, Blakemore LC, Betz RR, et al. Development and initial
validation of the classification of early onset scoliosis (CEOS). J Bone Joint Surg Am 2014;96(16):1359-67.
https://doi.org/10.2106/JBJS.M.00253
3. Campbell RM, Smith MD. Thoracic insufficiency syndrome and exotic scoliosis. J Bone Joint Surg Am
2007;89(Suppl 1):108-22. https://doi.org/10.2106/JBJS.F.00270
4. Pehrsson K, Larsson S, Nachemson A. Long-term follow-up of patients with untreated scoliosis. A study of
mortality, causes of death, and symptoms. Spine (Phila Pa 1979) 1992;17(9):1091-6.
https://doi.org/10.1097/00007632-199209000-00014
5. Hughes MS, Swarup I, Makarewich CA, Williams BA, Talwar D, Cahill PJ, et al. Expert Consensus for Early Onset
Scoliosis Surgery. J Pediatr Orthop 2020;40(7):e621-e628. https://doiorg/10.1097/BPO.0000000000001473
6. Calderaro C, Labianca L, Dolan LA, Yamashita K, Weinstein SL. Early-onset scoliosis treated with magnetically
controlled growing rods. Orthopedics 2020;43(6):e601-e608. https://doi.org/10.3928/01477447-20200910-04
7. Vitale MG, Matsumoto H, Roye DP Jr, Bye MR, Gomez JA, Booker WA, et al. A retrospective cohort study of
pulmonary function, radiographic measures, and quality of life in children with congenital scoliosis: an evaluation of patient outcomes after early spinal fusion. Spine (Phila Pa 1976) 2008;33(11):1242-9.
https://doi.org/10.1097/BRS.0b013e3181714536
8. Sankar WN, Acevedo DC, Skaggs DL. Comparison of complications among growing spinal implants. Spine (Phila Pa 1976) 2010;35(23):2091-6. https://doi.org/10.1097/BRS.0b013e3181c6edd7
9. Cheung KM, Cheung JP, Samartzis D, Mak K, Wong Y, Akbarnia BA, et al. Magnetically controlled growing rods
for severe spinal curvature in young children: a prospective case series. Lancet 2012;379:1967-74.
https://doi.org/10.1016/S0140-6736(12)60112-3
10. Yang S, Andras LM, Redding GJ, Skaggs DL. Early-onset scoliosis: A review of history, current treatment, and
future directions. Pediatrics 2016;137(1). https://doi.org/10.1542/peds.2015-0709
11. Beaven A, Gardner AC, Spilbury JB, Marks DS, Mehta JS, Newton-Ede M, et al. Magnetically controlled growing
rods: The experience of mechanical failure from a single center consecutive series of 28 children with a minimum
follow-up of 2 years. Asian Spine J 2018;12(5):794-802. https://doi.org/10.31616/asj.2018.12.5.794
12. Cyr M, Hilaire TS, Pan Z, Thompson GH, Vitale MG, Garg S, et al. Classification of early onset scoliosis has
excellent interobserver and intraobserver reliability. J Pediatr Orthop 2017;37(1):e1-e3. https://doi.org/10.1097/BPO.0000000000000688
13. Cheung JPY, Cheung KM. Current status of the magnetically controlled growing rod in treatment of early-onset scoliosis: What we know after a decade of experience. J Orthop Surg (Hong Kong) 2019;27(3):2309499019886945. https://doi.org/10.1177/2309499019886945
14. Skov ST, Wijdicks SPJ, Bünger C, Castelein RM, Li H, Kruyt MC. Treatment of early-onset scoliosis with a hybrid
of a concave magnetic driver (magnetic controlled growth rod) and a contra-lateral passive sliding rod construct
with apical control: preliminary report on 17 cases. Spine J 2018;18(1):122-9. https://doi.org/10.1016/j.spinee.2017.06.027
15. Choi E, Yaszay B, Mundis G, Hosseini P, Pawelek J, Alanay A, et al. Implant complications after magnetically
controlled growing rods for early onset scoliosis: A multicenter retrospective review. J Pediatr Orthop
2017;37(8):e588-e592. https://doi.org/10.1097/BPO.0000000000000803
16. Obid P, Yiu K, Cheung K, Kwan K, Ruf M, Cheung JPY. Magnetically controlled growing rods in early onset
scoliosis: radiological results, outcome, and complications in a series of 22 patients. Arch Orthop Trauma Surg
2021;141(7):1163-74. https://doi.org/10.1007/s00402-020-03518-z
17. Dannawi Z, Altaf F, Noordeen H, Harshavardhana NS, El Sebaie H. Early results of a remotely-operated magnetic growth rod in early-onset scoliosis. Bone Joint J 2013;95-B(1):75-80.
https://doi.org/10.1302/0301-620X.95B1.29565
18. Rolton D, Richards J, Nnadi C. Magnetic controlled growth rods versus conventional growing rod systems in the treatment of early onset scoliosis: a cost comparison. Eur Spine J 2015;24(7):1457-61.
https://doi.org/10.1007/s00586-014-3699-7
19. Bekmez S, Dede O, Yazici M. Advances in growing rods treatment for early onset scoliosis. Curr Opin Pediatr
2017;29(1):87-93. https://doi.org/10.1097/MOP.0000000000000432
20. Yilmaz G, Huri G, Demirkran G, Dağloğlu K, Ozkan C, Alanay A, et al. The effect of posterior distraction on
vertebral growth in immature pigs: an experimental simulation of growing rod technique. Spine (Phila Pa 1976)
2010;35(7):730-3. https://doi.org/10.1097/BRS.0b013e3181bcc3a3
21. Pasha S, Sturm PF. Contouring the magnetically controlled growing rods: impact on expansion capacity and proximal junctional kyphosis. Eur J Orthop Surg Traumatol 2021;31(1):79-84. https://doi.org/10.1007/s00590-020-02743-x
22. Tello CA. Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities. Experience and technical details. Orthop Clin North Am 1994;25:333-51.
PMID: 8159406
23. Bekmez S, Afandiyev A, Dede O, Karaismailoğlu E, Demirkiran HG, Yazici M. Is magnetically controlled growing rod the game changer in early-onset scoliosis? A preliminary report. J Pediatr Orthop 2019;39(3):e195-e200. https://doi.org/10.1097/bpo.0000000000001268
24. Jenks M, Craig J, Higgins J, Willits I, Barata T, Wood H, et al. The MAGEC system for spinal lengthening in
children with scoliosis: A NICE Medical Technology Guidance. Appl Health Econ Health Policy 2014;12:587-99.
https://doi.org/10.1007/s40258-014-0127-4
25. Rushton PRP, Smith SL, Forbes L, Bowey AJ, Gibson MJ, Joyce TJ. Force testing of explanted magnetically
controlled growing rods. Spine (Phila Pa 1976) 2019;44(4):233-9. https://doi.org/10.1097/BRS.0000000000002806
26. Yoon WW, Chang AC, Tyler P, Butt S, Raniga S, Noordeen H. The use of ultrasound in comparison to radiography in magnetically controlled growth rod lengthening measurement: a prospective study. Eur Spine J 2015;24(7):1422-6. https://doi.org/10.1007/s00586-014-3589-z
27. Stokes OM, O’Donovan EJ, Samartzis D, Bow CH, Luk KDK, Cheung KMC. Reducing radiation exposure in earlyonset scoliosis surgery patients: novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Spine J 2014;14(10):2397-404. https://doi.org/doi: 10.1016/j.spinee.2014.01.039
28. Cheung JPY, Yiu KKL, Bow C, Cheung PWH, Samartzis D, Cheung KMC. Learning curve in monitoring
magnetically controlled growing rod distractions with ultrasound. Spine (Phila Pa 1976) 2017;42(17):1289-94.
https://doi.org/10.1097/BRS.0000000000002114
29. Thompson GH, Akbarnia BA, Campbell RM Jr. Growing rod techniques in early-onset scoliosis. J Pediatr Orthop
2007;27(3):354-61. https://doi.org/10.1097/BPO.0b013e3180333eea
30. Heydar AM, Şirazi S, Bezer M. Magnetic controlled growing rods as a treatment of early onset scoliosis: Early
results with two patients. Spine (Phila Pa 1976) 2016;41(22):E1336-E1342. https://doi.org/10.1097/BRS.0000000000001614
31. Mardare M, Kieser DC, Ahmad A, Tubramanian T, Haleem S, Thakar C, et al. Targeted distraction: Spinal growth in children with early-onset scoliosis treated with a tail-gating technique for magnetically controlled growing rods. Spine (Phila Pa 1976) 2018;43(20):1225-31. https://doi.org/10.1097/BRS.0000000000002668
32. Kwan KYH, Alanay A, Yazici M, Demirkiran G, Helenius I, Nnadi C, et al. Unplanned reoperations in magnetically controlled growing rod surgery for early onset scoliosis with a minimum of two-year follow-up. Spine (Phila Pa 1976) 2017;42(24):E1410-E1414. https://doi.org/10.1097/BRS.0000000000002297
33. Zarei M, Tavakoli M, Ghadimi E, Moharrami A, Nili A, Vafaei A, et al. Complications of dual growing rod with allpedicle screw instrumentation in the treatment of early-onset scoliosis. J Orthop Surg Res 2021;16(1):112.
https://doi.org/10.1186/s13018-021-02267-y
34. Teoh KH, Winson DM, James SH, Jones A, Howes J, Davies PR, et al. Do magnetic growing rods have lower
complication rates compared with conventional growing rods? Spine J 2016;16(4 Suppl):S40-S44.
https://doi.org/10.1016/j.spinee.2015.12.099
35. Lebon J, Batailler C, Wargny M, Choufani E, Violas P, Fron D, et al. Magnetically controlled growing rod in early
onset scoliosis: a 30-case multicenter study. Eur Spine J 2017;26(6):1567-76. https://doi.org/10.1007/s00586-016-4929-y
36. Akbarnia BA, Pawelek JB, Cheung KM, Demirkiran G, Elsebaie H, Emans JB, et al. Traditional growing rods
versus magnetically controlled growing rods for the surgical treatment of early-onset scoliosis: a case-matched
2-year study. Spine Deform 2014;2(6):493-7. https://doi.org/10.1016/j.jspd.2014.09.050
37. Heydar AM, Sirazi S, Okay E, Kiyak G, Beze M. Short segment spinal instrumentation in early-onset scoliosis
patients treated with magnetically controlled growing rods: surgical technique and mid- short-term outcomes. Spine (Phila Pa 1976) 2017;42(24):1888-94. https://doi.org/10.1097/BRS.0000000000002265
38. Ridderbusch K, Rupprecht M, Kunkel P, Hagemann C, Stücker R. Preliminary results of magnetically controlled
growing rods for early onset scoliosis. J Pediatr Orthop 2017;37(8):e575-e580.
https://doi.org/10.1097/BPO.0000000000000752
39. Keskinen H, Helenius I, Nnadi C, Cheung K, Ferguson J, Mundis G, et al. Preliminary comparison of primary and conversion surgery with magnetically controlled growing rods in children with early onset scoliosis. Eur Spine J 2016;25(10):3294-300. https://doi.org/10.1007/s00586-016-4597-y
40. Thakar C, Kieser DC, Mardare M, Haleem S, Fairbank J, Nnadi C. Systematic review of the complications
associated with magnetically controlled growing rods for the treatment of early onset scoliosis. Eur Spine J
2018;27(9):2062-71. https://doi.org/10.1007/s00586-018-5590-4
41. Cheung PY, Yiu KKL, Samartzis D, Kwan K, Tan BB, Cheung KMC. Rod lengthening with the magnetically
controlled growing rod: Factors influencing rod slippage and reduced gains during distractions. Spine (Phila Pa
1976) 2018;43(7):E399-E405. https://doi.org/10.1097/BRS.0000000000002358
42. Hosseini P, Pawelek J, Mundis GM, Yaszay B, Ferguson J, Helenius I, et al. Magnetically controlled growing rods for early-onset scoliosis: a multicenter study of 23 cases with minimum 2 years follow-up. Spine (Phila Pa 1976) 2016;41(18):1456-62. https://doi/10.1097/BRS.0000000000001561