Basicervical Fractures Treated with Single-Screw Cephalomedullary Nail. Case Series and Review of the Literature

Main Article Content

Cristina Llarena-Barroso
Alejandro Morales-Ortega
Carlos López Orosa

Abstract

Background: Given the rotational instability of basicervical fractures, recent studies suggest using a spiral blade, a second screw or compression screws instead of single-screw cephalomedullary nail fixation. Objective: The aim of our study is to analyze the outcomes of basicervical fractures treated with single-screw cephalomedullary nails. Materials and Methods: This is a retrospective study based on a case series identified from all extracapsular femoral fractures treated with single-screw cephalomedullary nails in our hospital from 2016 to 2020. Clinical records and radiographs from 269 patients were reviewed; only 12 (6.4%) subjects met inclusion criteria (two-part non-pathologic fractures with at least a 9-month follow-up). Different factors were evaluated, including: tip-apex distance, cephalic screw position, reduction quality, surgical time, complications and re-operations; differences between patients who experienced complications and those who did not were also assessed. Results: Four subjects out of the 12 included patients experienced fixation failure and implant cut-out. There were no statistically significant differences between subjects with and without cut-out regarding the analyzed variables. Conclusions: The high cut-out rate observed in our samplesuggests considering the hypothesis that single-screw cephalomedullary nail fixation should not be used in basicervical fractures. Alternative fixation devices capable of controlling the high rotational instability of these fractures may be preferable.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Llarena-Barroso, C., Morales-Ortega, A., & López Orosa, C. (2023). Basicervical Fractures Treated with Single-Screw Cephalomedullary Nail. Case Series and Review of the Literature . Revista De La Asociación Argentina De Ortopedia Y Traumatología, 88(5), 485-492. https://doi.org/10.15417/issn.1852-7434.2023.88.5.1679
Section
Clinical Research
Author Biographies

Cristina Llarena-Barroso, Traumatology and Orthopedic Surgery Department, Hospital Universitario Hospital Rey Juan Carlos, Madrid, Spain

Traumatology and Orthopedic Surgery Department, Hospital Universitario Hospital Rey Juan Carlos, Madrid, Spain

Alejandro Morales-Ortega, Internal Medicine Service, Hospital Universitario de Fuenlabrada, Madrid, Spain.Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, Spain

Internal Medicine Service, Hospital Universitario de Fuenlabrada, Madrid, Spain Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, Spain

Carlos López Orosa, Traumatology and Orthopedic Surgery Department, Hospital Universitario de Fuenlabrada, Madrid, Spain

Traumatology and Orthopedic Surgery Department, Hospital Universitario de Fuenlabrada, Madrid, Spain

References

1. Marco F, Galán-Olleros M, Mora-Fernández J. Fractura de cadera: epidemia socio-sanitaria del siglo XXI en el
primer mundo. An RANM 2018;135:203-10. https://doi.org/10.32440/ar.2018.135.03.rev01

2. Aguado-Maestro I, Escudero-Marcos R, Nistal-Rodríguez J, Alonso-García N, Pérez-Bermejo D, Bañuelos-Díaz A,
et al. Hip fractures with rotational instability: concept and surgical technique. Surg Curr Res 2013;3:146.
https://doi.org/10.4172/2161-1076.1000146

3. Blair B, Koval KJ, Kummer F, Zuckerman JD. Basicervical fractures of the proximal femur. A biomechanical study
of 3 internal fixation techniques. Clin Orthop Relat Res 1994;306:256-63. PMID: 8070205

4. Watson ST, Schaller TM, Tanner SL, Adams JD, Jeray KJ. Outcomes of low-energy basicervical proximal femoral
fractures treated with cephalomedullary fixation. J Bone Joint Surg Am 2016;98:1097e102. https://doi.org/10.2106/jbjs.15.01093

5. Kim JT, Ha YC, Park CH, Yoo JI, Kim TYl. Single screw type of lag screw results higher reoperation rate in the
osteosynthesis of basicervical hip fracture. J Orthop Sci 2020;25:152-5. https://doi.org/10.1016/j.jos.2019.02.010

6. Augat P, Bliven E, Hackl S. Biomechanics of femoral neck fractures and implications for fixation. J Orthop Trauma 2019;33:S27-S32. https://doi.org/10.1097/bot.0000000000001365

7. Escudero Marcos R. Fracturas de cadera de trazo basicervical con inestabilidad rotacional. Estudio retrospectivo de la eficacia de dos sistemas de incremento de la estabilidad mecánica del implante [Tesis doctoral]. Valladolid: Universidad de Valladolid; 2015. Disponible en: http://uvadoc.uva.es/handle/10324/16325

8. Hu SJ, Yu G, Zhang S. Surgical treatment of basicervical intertrochanteric fractures of the proximal femur with
cephalomeduallary hip nails. Orthop Surg 2013;5:124-9. https://doi.org/10.1111/os.12038

9. Yoo J, Chang J, Park Ch, Hwang J. Risk factors associated with failure of cephalomedullary nail fixation in the
treatment of trochanteric hip fractures. Clin Orthop Surg 2020;12:29-36. https://doi.org/10.4055/cios.2020.12.1.29

10. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 1995;77:1058-64. https://doi.org/10.2106/00004623-199507000-00012

11. Gardenbroek TJ, Segers MJ, Simmermacher RK, Hammacher ER. The proximal femur nail antirotation: an
identifiable improvement in the treatment of unstable pertrochanteric fractures? J Trauma 2011;71:169-74.
https://doi.org/10.1097/ta.0b013e3182213c6e

12. Fogagnolo F, Kfuri M Jr, Paccola CA. Intramedullary fixation of pertrochanteric hip fractures with the short AOASIF proximal femoral nail. Arch Orthop Trauma Surg 2004;124:31-7. https://doi.org/10.1007/s00402-003-0586-9

13. Saarenpaa I, Partanen J, Jalovaara P. Basicervical fracture--a rare type of hip fracture. Arch Orthop Trauma Surg 2002;122(2):69-72. https://doi.org/10.1007/s004020100306

14. Massoud EI. Fixation of basicervical and related fractures. Int Orthop 2010;34(4):577-82.
https://doi.org/10.1007/s00264-009-0814-1

15. Imren Y, Gurkan V, Bilsel K, Desteli EE, Tuna M, Gurcan C, et al. Biomechanical comparison of dynamic hip screw, proximal femoral nail, cannulated screw and monoaxial external fixation in the treatment of basicervical femoral neck fractures. Acta Chir Orthop Traumatol Chech 2015;82(2):140-4. PMID: 26317185

16. Su BW, Heyworth BE, Protopsaltis TS, Lipton CB, Sinicropi SM, Chapman CB, et al. Basicervical versus
intertrochanteric fractures: An analysis of radiographic and functional outcomes. Orthopedics 2006;29(10):919-25. https://doi.org/10.3928/01477447-20061001-04

17. Lenich A, Bachmeier S, Dendorfer S, Mayr E, Nerlich M, Füchtmeier B. Development of a test system to analyze different hip fracture osteosyntheses under simulated walking. Biomed Tech (Berl) 2012;57(2):113-9.
https://doi.org/10.1515/bmt-2011-0999

18. Guo J, Dong W, Jin L, Yin Y, Zhang R, Hou Z, et al. Treatment of basicervical femoral neck fractures with proximal femoral nail antirotation. J Int Med Res 2019;47(9):4333-43. https://doi.org/10.1177/0300060519862957

19. Wang Q, Gu XH, Li X, Wu JH, Ju YF, Huang WJ, et al. Management of low-energy basicervical proximal femoral
fractures by proximal femoral nail anti-rotation. Orthop Surg 2019;11(6):1173-9. https://doi.org/10.1111/os.12579

20. Lee Yk, Yoon BH, Hwang JS, Cha YHH, Kim KC, Koo KH. Risk factors of fixation failure in basicervical femoral
neck fractures: Which device is optimal for fixation? Injury 2018;49(3):691-6. https://doi.org/10.1016/j.injury.2018.02.009

21. Johnson J, Deren M, Chambers A, Cassidy D, Koruprolu S, Born C. Biomechanical analysis of fixation devices for basicervical femoral neck fractures. J Am Acad Orthop Surg 2019;27(1):e41-8. https://doi.org/10.5435/jaaos-d-17-00155

22. Kwak DK, Kim WH, Lee SJ, Rhyu SH, Jang CY, Yoo JH. Biomechanical comparison of three different intramedullary nails for fixation of unstable basicervical intertrochanteric fractures of the proximal femur:
Experimental studies. Biomed Res Int 2018;2018:7618079. https://doi.org/10.1155/2018/7618079

23. Kim CH, Kim HS, Kim YC, Moon DH. Does the helical blade lead to higher rates of fixation failure as compared
to lag screw in the cephalomedullary nailing treatment of hip fractures? A systematic review and meta-analysis. J
Orthop Trauma 2021;35(8):401-7. https://doi.org/10.1097/BOT.0000000000002045

24. Zhao F, Guo L, Wang X, Zhang Y. Benefit of lag screw placement by a single- or two-screw nailing system in
elderly patients with AO/OTA 31-A2 trochanteric fractures. J Int Med Res 2021;49(3):3000605211003766.
https://doi.org/10.1177/03000605211003766

25. John B, Sharma A, Mahajan A, Pandey R. Tip-apex distance and other predictors of outcome in cephalomedullary nailing of unstable trochanteric fractures. J Clin Orthop Trauma 2019;10(Suppl 1):S88-S94.
https://doi.org/10.1016/j.jcot.2019.04.018