Pharmacological Management of Bone Loss in Patients with Spondylodiscitis: A Systematic Review
Main Article Content
Abstract
Objective: To review the existing scientific evidence on the pharmacological treatment of bone loss secondary to spondylodiscitis.
Materials and Methods: A systematic search was conducted in major medical databases to identify studies evaluating the use of teriparatide, romosozumab, or denosumab in patients with lytic bone defects associated with pyogenic spondylodiscitis or Pott’s disease.
Results: Two studies reported improved bone mineral density and enhanced osteoblastic activity following the use of teriparatide in patients with bone loss or osteoporosis associated with vertebral infection. Adverse reactions were minimal, and no interactions with antibiotic therapy were observed. In one of the studies, treatment was supplemented with romosozumab. A third study demonstrated improved outcomes in infected osteoblasts. Conversely, the use of bisphosphonates and denosumab was associated with poor outcomes and worsening of the infection.
Conclusions: Anabolic agents such as teriparatide and romosozumab appear to be promising options for managing bone loss and severe osteoporosis in the context of vertebral infections, with a favorable safety profile. However, clinical trials are needed to confirm their efficacy.
Downloads
Metrics
Article Details
Manuscript acceptance by the Journal implies the simultaneous non-submission to any other journal or publishing house. The RAAOT is under the Licencia Creative Commnos Atribución-NoComercial-Compartir Obras Derivadas Igual 4.0 Internacional (CC-BY-NC.SA 4.0) (http://creativecommons.org/licences/by-nc-sa/4.0/deed.es). Articles can be shared, copied, distributed, modified, altered, transformed into a derivative work, executed and publicly communicated, provided a) the authors and the original publication (Journal, Publisher and URL) are mentioned, b) they are not used for commercial purposes, c) the same terms of the license are maintained.
In the event that the manuscript is approved for its next publication, the authors retain the copyright and will assign to the journal the rights of publication, edition, reproduction, distribution, exhibition and communication at a national and international level in the different databases. data, repositories and portals.
It is hereby stated that the mentioned manuscript has not been published and that it is not being printed in any other national or foreign journal.
The authors hereby accept the necessary modifications, suggested by the reviewers, in order to adapt the manuscript to the style and publication rules of this Journal.
References
spondylodiscitis using medications for osteoporosis: A literature review. Int J Mol Sci 2021;22(9):4453.
https://doi.org/10.3390/ijms22094453
2. Bettag C, Abboud T, von der Brelie C. Do we underdiagnose osteoporosis in patients with pyogenic spondylodiscitis? Neurosurg Focus 2020;49 (2):E16. https://doi.org/10.3171/2020.5.FOCUS20267
3. Yurube T, Han I, Sakai D. Concepts of regeneration for spinal diseases in 2021. Int J Mol Sci 2021;22(16):8356. https://doi.org/10.3390/ijms22168356
4. Nickerson EK, Sinha R. Vertebral osteomyelitis in adults: an update. Br Med Bull 2016;117(1):121-38. https://doi.org/10.1093/bmb/ldw003
5. Pourtaheri S, Issa K, Stewart T, Shafa E, Ajiboye R, Buerba RA, et al. Comparison of instrumented and noninstrumented surgical treatment of severe vertebral osteomielitis. Orthopedics 2016;39(3):e504-e508. https://doi.org/10.3928/01477447-20160427-07
6. Shinohara A, Ueno Y, Marumo K. Weekly teriparatide therapy rapidly accelerates bone healing in pyogenic spondylitis with severe osteoporosis. Asian Spine J 2014;8(4):498-501. https://doi.org/10.4184/asj.2014.8.4.498
7. Bazán PL, Cepeda R, Medina JR, Godoy A, Soria J, et al. Use of the hounsfield units in the spinal surgery planning. systematic review and meta-analysis. Coluna/Columna 2022;21(3):e264579. https://doi.org/10.1590/S1808-185120222103264579
8. St Jeor JD, Jackson TJ, Xiong AE, Freedman BA, Sebastian AS, Currier BL, et al. Average lumbar Hounsfield units predict osteoporosis-related complications following lumbar spine fusión. Global Spine J 2022;12(5):851-7. https://doi.org/10.1177/2192568220975365
9. Kim KJ, Kim DH, Lee JI, Choi BK, Han IH, Nam KH. Hounsfield units on lumbar computed tomography for predicting regional bone mineral density. Open Med (Wars) 2019;14:545-51. https://doi.org10.1515/med-2019-0061
10. Choi MK, Kim SM, Lim JK. Diagnostic efficacy of Hounsfield units in spine CT for the assessment of real bone mineral density of degenerative spine: correlation study between T-scores determined by DEXA scan and Hounsfield units from CT. Acta Neurochir 2016;158(7):1421-7. https://doi.org/10.1007/s00701-016-2821-5
11. Tsai SHL, Chien RS, Lichter K, Alharthy R, Alvi MA, Goya A, et al. Teriparatide and bisphosphonate use in osteoporotic spinal fusion patients: a systematic review and meta-analysis. Arch Osteoporos 2020;15(1):158. https://doi.org/10.1007/s11657020-00738-z
12. Bryant JP, Perez-Roman RJ, Burks SS, Wang MY. Antiresorptive and anabolic medications used in the perioperative period of patients with osteoporosis undergoing spine surgery: their impact on the biology of fusion and systematic review of the literature. Neurosurg Focus 2021;50(6):1-11. https://doi.org/10.3171/2021.3.FOCUS201049
13. Fatima N, Massaad E, Hadzipasic M, Shankar GM, Shin JH. Assessment of the efficacy of teriparatide treatment for osteoporosis on lumbar fusion surgery outcomes: a systematic review and meta-analysis. Neurosurg Rev 2021;44(3):1357-70. https//doi.org/10.1007/s10143-020-01359-3
14. Chaudhary N, Lee JS, Wu JY, Tharin S. Evidence for use of teriparatide in spinal fusion surgery in osteoporotic patients. World Neurosurg 2017;100:551-6. https://doi.org/10.1016/j.wneu.2016.11.135
15. Oba H, Takahashi J, Yokomichi H, Hasegawa T, Ebata S, Mukaiyama K, et al. Weekly teriparatide versus bisphosphonate for bone union during 6 months after multi-level lumbar interbody fusion for osteoporotic patients: A multicenter, prospective, randomized study. Spine (Phila PA 1976) 2020;45(13):863-71. https://doi.org/10.1097/BRS.0000000000003426
16. Ebata S, Takahashi J, Hasegawa T, Mukaiyama K, Isogai Y, Ohba T, et al. Role of weekly teriparatide administration in osseous union enhancement within six months after posterior or transforaminal lumbar interbody fusion for osteoporosis-associated lumbar degenerative disorders: A multicenter, prospective randomized study. J Bone Joint Surg Am 2017;99(5):365-72. https://doi.org/10.2106/JBJS.16.00230
17. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Teriparatide accelerates
lumbar posterolateral fusion in women with postmenopausal osteoporosis: prospective study. Spine
(Phila PA 1976) 2012;37(23):E1464-8. https://doi.org/10.1097/BRS.0b013e31826ca2a8
18. Seki S, Hirano N, Kawaguchi Y, Nakano M, Yasuda T, Suzuki K, et al. Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis. Eur Spine J 2017;26(8):2121-7. https://doi.org/10.1007/s00586-017-4959-0
19. Kim JW, Park SW, Kim YB, Ko MJ. The effect of postoperative use of teriparatide reducing screw loosening in osteoporotic patients. J Korean Neurosurg Soc 2018;61(4):494-502. https://doi.org/10.3340/jkns.2017.0216
20. Ohtori S, Inoue G, Orita S, Yamauchi K, Eguchi Y, Ochiai N, et al. Comparison of teriparatide and bisphosphonate treatment to reduce pedicle screw loosening after lumbar spinal fusion surgery in postmenopausal women with osteoporosis from a bone quality perspective. Spine (Phila PA 1976) 2013;38(8):E487-92. https://doi.org/10.1097/BRS.0b013e31828826dd
21. Lee S, Seo YJ, Choi JY, Che X, Kim HJ, Eum SY, et al. Effect of teriparatide on drug treatment
of tuberculous spondylitis: an experimental study. Sci Rep 2022;12(1):21667. https://doi.org/10.1038/s41598-022-25174-6
22. Shousha M, Boehm H. Surgical treatment of cervical spondylodiscitis: A review of 30 consecutive patients. Spine (Phila PA) 2012;37(1):E30-E36. https://doi.org/10.1097/brs.0b013e31821bfdb2
23. Yang J, Tang R, Yi J, Chen Y, Li X, Yu T, et al. Diallyl disulfifide alleviates inflammatory osteolysis by suppressing
osteoclastogenesis via NF-κB-NFATc1 signal pathway. FASEB J 2019;33(6):7261-73. https://doi.org/10.1096/fj.201802172r
24. Komine M, Kukita A, Kukita T, Ogata Y, Hotokebuchi T, Kohashi O. Tumor necrosis factor-alpha cooperates with receptor activator of nuclear factor kappaB ligand in generation of osteoclasts in stromal cell-depleted rat bone marrow cell culture. Bone 2001;28(5):474-83. https://doi.org/10.1016/s8756-3282(01)00420-3
25. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T. Immunological reaction in TNF-
α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013:2013:181849.
https://doi.org/10.1155/2013/181849
26. Ruscitti P, Cipriani P, Carubbi F, Liakouli V, Zazzeroni F, di Benedetto P, et al. The role of IL-1β in the bone loss
during rheumatic diseases. Mediators Inflamm 2015:2015:782382. https://doi.org/10.1155/2015/782382
27. Jules J, Zhang P, Ashley JW, Wei S, Shi Z, Liu J, et al. Molecular basis of requirement of receptor activator of
nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis. J Biol Chem 2012;287(19):15728-38.
https://doi.org/10.1074/jbc.m111.296228
28. Yoshitake F, Itoh S, Narita H, Ishihara K, Ebisu S. Interleukin-6 directly inhibits osteoclast differentiation by
suppressing receptor activator of NF-kappaB signaling pathways. J Biol Chem 2008;283(17):11535-40.
https://doi.org/10.1074/jbc.M607999200
29. Kim J, Jang SB, Kim SW, Oh JK, Kim TH. Clinical effect of early bisphosphonate treatment for pyogenic vertebral
osteomyelitis with osteoporosis: An analysis by the Cox proportional hazard model. Spine J 2019;19(3):418-29.
https://doi.org/10.1016/j.spinee.2018.08.014
30. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature 1999;397(6717):315-23.
https://doi.org/10.1038/16852
31. Khan AA, Morrison A, Hanley DA, Felsenberg D, McCauley LK, O’Ryan F, et al. Diagnosis and management of
osteonecrosis of the jaw: A systematic review and international consensus. J Bone Miner Res 2015;30(1):3-23.
https://doi.org/10.1002/jbmr.2405
32. Hoefert S, Schmitz I, Weichert F, Gaspar M, Eufifinger H. Macrophages and bisphosphonate-related osteonecrosis of the jaw (BRONJ): Evidence of local immunosuppression of macrophages in contrast to other infectious jaw diseases. Clin Oral Investig 2015;19(2):497-508. https://doi.org/10.1007/s00784-014-1273-7
33. Lee JJ, Cheng SJ, Jeng JH, Chiang CP, Lau HP, Kok SH. Successful treatment of advanced bisphosphonate-related osteonecrosis of the mandible with adjunctive teriparatide therapy. Head Neck 2011;33(9):1366-71.
https://doi.org/10.1002/hed.21380
34. Lau AN, Adachi JD. Resolution of osteonecrosis of the jaw after teriparatide [recombinant human PTH-(1-34)]
therapy. J Rheumatol 2009;36(8):1835-7. https://doi.org/10.3899/jrheum.081176
35. Mouyis M, Fitz-Clarence H, Manson J, Ciurtin C. Teriparatide: An unexpected adjunct for the treatment of a longstanding infected elbow prosthesis prevented arm amputation. Clin Rheumatol 2015;34(4):799-800.
https://doi.org/10.1007/s10067-015-2909-y
36. Nishikawa M, Kaneshiro S, Takami K, Owaki H, Fuji T. Bone stock reconstruction for huge bone loss using
allograft-bones, bone marrow, and teriparatide in an infected total knee arthroplasty. J Clin Orthop Trauma
2019;10(2):329-33. https://doi.org/10.1016/j.jcot.2018.03.004
37. Rollo G, Luceri F, Falzarano G, Salomone C, Bonura EM, Popkov D, et al. Effectiveness of teriparatide combined
with the Ilizarov technique in septic tibial non-union. Med Glas (Zenica) 2021;18(1):287-92. https://doi.org/10.17392/1280-21
38. Chen Y, Alman A. Wnt pathway, an essential role in bone regeneration. J Cell Biochem 2009;106(3):353-62.
https://doi.org/10.1002/jcb.22020
39. Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 2011;22(2):435-46. https//doi.org/10.1007/s00198-010-1326-y
40. Watts NB, Roux C, Modlin JF, Brown JP, Daniels A, Jackson S, et al. Infections in postmenopausal women with
osteoporosis treated with denosumab or placebo: Coincidence or causal association? Osteoporos Int 2012;23:327-37. https://doi.org/10.1007/s00198-011-1755-2
41. Toulis KA, Anastasilakis AD. Increased risk of serious infections in women with osteopenia or osteoporosis treated with denosumab. Osteoporos Int 2010;21:1963-4. https://doi.org/10.1007/s00198-009-1145-1
42. Catton B, Surangiwala S, Towheed T. Is denosumab associated with an increased risk for infection in patients with low bone mineral density? A systematic review and meta-analysis of randomized controlled trials. Int J Rheum Dis 2021;24(7):1-11. https://doi.org/10.1111/1756-185X.14101
43. Gong L, Altman RB, Klein TE. Bisphosphonates pathway. Pharmacogenet Genom 2011;21(1):50-3.
https://doi.org/10.1097/fpc.0b013e328335729c
44. Ganguli A, Steward C, Butler SL, Philips GJ, Meikle ST, Lloyd AW, et al. Bacterial adhesion to bisphosphonate coated hydroxyapatite. J Mater Sci Mater Med 2005;16(4):283-7. https://doi.org/10.1007/s10856-005-0625-x
45. Thompson K, Freitag L, Styger U, Camenisch K, Zeiter S, Arens D, et al. Impact of low bone mass and antiresorptive therapy on antibiotic efficacy in a rat model of orthopedic device-related infection. J Orthop Res 2021;39(2):415-45. https://doi.org/10.1002/jor.24951.
46. Eder C, Schenk S, Trififinopoulos J, Külekci B, Kienzl M, Schildbsock S, et al. Does intrawound application of vancomycin influence bone healing in spinal surgery? Eur Spine J 2016;25(4):1021e8. https://doi.org/10.1007/s00586-015-3943-9
47. Tsuji KS, Kimura K, Tateda K, Takahashi H. Protective effect of teriparatide against vancomycin-induced cytotoxicity in osteoblasts. J Orthop Sci 2023;28(6):1384-91. https://doi.org/10.1016/j.jos.2022.09.018