Evolution of neurological complications in spinal deformity surgery in children
Main Article Content
Abstract
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Manuscript acceptance by the Journal implies the simultaneous non-submission to any other journal or publishing house. The RAAOT is under the Licencia Creative Commnos Atribución-NoComercial-Compartir Obras Derivadas Igual 4.0 Internacional (CC-BY-NC.SA 4.0) (http://creativecommons.org/licences/by-nc-sa/4.0/deed.es). Articles can be shared, copied, distributed, modified, altered, transformed into a derivative work, executed and publicly communicated, provided a) the authors and the original publication (Journal, Publisher and URL) are mentioned, b) they are not used for commercial purposes, c) the same terms of the license are maintained.
In the event that the manuscript is approved for its next publication, the authors retain the copyright and will assign to the journal the rights of publication, edition, reproduction, distribution, exhibition and communication at a national and international level in the different databases. data, repositories and portals.
It is hereby stated that the mentioned manuscript has not been published and that it is not being printed in any other national or foreign journal.
The authors hereby accept the necessary modifications, suggested by the reviewers, in order to adapt the manuscript to the style and publication rules of this Journal.
References
Research Society. J Bone Joint Surg Am 1975;57:404-8.
2. Diab M, Smith AR. Neural complications in the surgical treatment of adolescent idiopathic scoliosis. Spine 2007;32(24):2759-
63.
3. Winter RB. Neurologic safety in spinal deformity surgery. Spine 1997;22:1527-33.
4. Asher M, Lai SM, Burton D, Manna B, Cooper A. Safety and efficacy of Isola instrumentation and arthrodesis for adolescent
idiopathic scoliosis: two- to 12-year follow up. Spine 2004;15:2013-23.
5. Stagnara P. Experience with the wake-up test in 623 cases (1970-1977). Paper presented at: Italian Society for Spinal Deformity,
1977, Rome, Italy.
6. Fujita M, Diab M, Xu Z, Puttlitz C. A biomechanical analysis of sublaminar and subtransverse process fixation using metal
wires and polyethylene cables. Spine 2006;31:2202-8.
7. Wilber RG, Thompson GH, Shaffer JW, Brown RH, Nash CL Jr. Postoperative neurological deficit in segmental spinal instrumentation.
A study using spinal cord monitoring. J Bone Joint Surg Am 1984;8(66):1178-87.
8. Girardi FP, Boachie-Adjei O, Rawlins BA. Safety of sublaminar wires with Isola instrumentation for the treatment of idiopathic
scoliosis. Spine 2000;15:691-5.
9. Coe JD, Arlet V, Donaldson W, Berven S, Hanson D, Mudiyam R, Perra J, Shaffrey C. Complications in spinal fusion for
adolescent idiopathic scoliosis in the new millenium: a report of the Scoliosis Research Society Morbidity and Mortality Committee.
Spine 2006;31:345-9.
10. Cusick JF, Jyklebust J, Syvoloski M. Effects of vertebral column distraction in the monkey. J Neurosurg 1982;57:651-9.
11. Bridwell KH, Lenke LG, Baldus C, Blanke K. Major intraoperative neurologic deficits in pediatric and adult spinal deformity
patients: Incidence and etiology at one institution. Spine 1998;23:324-31.
12. Pahys J, Guille J. Neurologic injury in the surgical treatment of idiopathic scoliosis: guidelines for assessment and management.
J Am Acad Orthop Surg 2009;17:426-34.
13. Yamada T, Yeh M, Kimura J. Fundamental principles of somatosensory evoked potentials. Phys Med Rehabil Clin N Am
2004;15:19-42.
14. Belmont P, Klemme W, Dhawan A, Polly D. In vivo accuracy of thoracic pedicle screws. Spine 2001;26:2340-6.
15. Grundy BL, Nash CL, Brown RH. Anterior pressure manipulation alters spinal cord function during correction of scoliosis.
Anesthesiology 1981;54:249-53.
16. Kling TF, Fergusson NV, Leach AB. The influence of induced hypotension and spine distraction on canine spinal cord blood
flow. Spine 1985;10:878-83.
17. Naslund TC, Hollier LH, Money SR, Facundus EC, Skenderis BS II. Protecting the ischemic spinal cord during aortic clamping:
The influence of anesthetics and hypothermia. Ann Surg 1992;215:409-
15.
18. Vauzelle C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop
1973;93:173-8.
19. Nash CL Jr, Lorig RA, Schatzinger LA, Brown RH. Spinal monitoring during operative treatment of the spine. Clin Orthop
Relat Res 1977;126:100-5.
20. Padberg AM, Wilson-Holden TJ, Lenke LG, Bridwell KH. Somatosensory- and motor-evoked potential monitoring without a
wake up test during idiopathic scoliosis surgery: an accepted standard of care. Spine 1998;23:1392-1400.
21. Macdonald DB. Intraoperative motor evoked potential monitoring: Overview and update. J Clin Monit Comput 2006;20:347-77.
22. Lieberman J, Lyon R, Feiner J. The efficacy of motor evoked potenctials in fixed sagittal imbalance deformity correction surgery.
Spine 2008;13: E414-E424.
23. Lotto M, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials.
J Neurosurg Anesthesiol 2004;16:32-42.
24. DiCindio S, Schwartz DM. Anesthetic management for pediatric spinal fusion: Implications of advances in spinal cord monitoring.
Anesthesiol Clin North Am 2005;23:765-87.
25. Mooney JF III, Bernstein R, Hennrikus WL Jr, MacEwen GD. Neurologic risk management in scoliosis surgery. J Pediatr
Orthop 2002;22:683-9.
26. Devlin VJ, Schwartz DM. Intraoperative neurophysiologic monitoring during spinal surgery. J Am Acad Orthop Surg
2007;15:549-60.
27. Raynor BL, Lenke LG, Kim Y. Can triggered electromyograph thresholds predict safe thoracic pedicle screw placement? Spine
2002;27:2030-5.
28. Tsai RY, Yang RS, Nuwer MR. Intraoperative dermatomal evoked potencial monitoring fails to predict outcome from lumbar
decompression surgery. Spine 1997;22:1970-5.
29. Bracken MB, Shepard MJ, Holford TR. Administration of methylprednisolone for 24 or 48 hours or tirilazadmesylate for 48
hours in the treatment of acute spinal cord injury: Result of the Third National Acute Spinal Cord Injury Randomized Controlled
Trial. National Acute Spinal Cord Injury Study. JAMA 1997;277:1597-1604.
30. Przybylski GJ, Resnick DK, Ryken TC. Pharmacological therapy after acute spinal cord injury. Neurosurgery 2002;50(3
Suppl):S63-70.
31. Sidhu GS, Ghag A, Prokuski V, Vaccaro AR, Radcliff KE. Civilian gunshot injuries of the spinal cord: a systematic review of
the current literature. Clin Orthop Relat Res 2013;471:3945-55.
32. Potenza V, Weinstein Sl, Neyt JG. Dysfunction of the spinal cord during spinal arthrodesis for scoliosis: Recommendations for
early detection and treatment. A case report. J Bone Joint Surg Am 1998;80:1679-83.
33. Carlson GD, Minato Y, Okada A. Early time-dependent decompression for spinal cord injury: vascular mechanisms of recovery.
J Neurotrauma 1997;14:951-62.
34. Yeoman PM, Gibson MJ, Hutchinson A. Influence of induced hypotension and spinal distraction on feline spinal somatosensory
evoked potentials. Br J Anesth 1989;63:315-20.
35. Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M. Who is going to walk? A review of the factors influencing
walking recovery after spinal cord injury. Front Hum Neurosci 2014;8:141.
36. Burns A, Marino R, Flanders A, Flett H. Clinical diagnosis and prognosis following spinal cord injury. Handb Clin Neurol
2012;109:47-62.
37. Hillen BK, Abbas JJ, Jung R. Accelerating locomotor recovery after incomplete spinal injury. Ann NY Acad Sci 2013;1279:164-
74.