Spinal Cord Contusion in Rats Treated with Systemic Hypothermia. Experimental Cold-inducible Protein Expression

Main Article Content

Aníbal José Sarotto
María Agustina Toscanini
Daniela Contartese
Verónica B. Dorfman
Ronan Nakamura
Micaela Besse
Ignacio M. Larráyoz
Alfredo Martínez
Elena De Matteo
Manuel Rey-Funes
César Fabián Loidl

Abstract

Introduction: Traumatic spinal cord injury is the leading cause of motor disability worldwide, and the WHO considers it a priority. This study sought to investigate the effects of therapeutic hypothermia following spinal cord contusion.
Materials and Methods: Male rats that underwent experimental spinal cord contusion were used. For this purpose, four experimental groups were created (n=6 per group): a) control, b) lesion in normothermia (24°C, sacrificed 12h after the injury), c) lesion in normothermia (24°C, sacrificed 24h after the injury), and d) hypothermic injury (8°C for 180 min, sacrificed 24h after the injury). The expression of coldinducible RNA-binding protein (CIRBP), Caspase-3, and NeuN was studied.
Results: At 24 hours, spinal cord damage raised CIRBP expression slightly while also increasing Caspase-3 significantly. All of this was accompanied by images of damaged motor neurons in the anterior horn. In animals treated with hypothermia, high expression of CIRBP and very low levels of Caspase-3 were observed, which were indistinguishable from controls. Furthermore, the number of viable motor neurons was partially restored.
Conclusions: The experimental model developed in this study was effective at inducing spinal cord injury, demonstrating neuronal protection through hypothermia. The increased expression of CIRBP in the spinal cord of rats with injury and hypothermic treatment when compared to the normothermic group suggests the possibility of using substances that increase CIRBP as therapies for the treatment of contusive spinal cord injuries.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Sarotto, A. J., Toscanini, M. A., Contartese, D., Dorfman, V. B., Nakamura, R., Besse, M., Larráyoz, I. M., Martínez , A., De Matteo, E., Rey-Funes, M., & Loidl, C. F. (2024). Spinal Cord Contusion in Rats Treated with Systemic Hypothermia. Experimental Cold-inducible Protein Expression. Revista De La Asociación Argentina De Ortopedia Y Traumatología, 89(3), 299-313. https://doi.org/10.15417/issn.1852-7434.2024.89.3.1866
Section
Basic Research
Author Biographies

Aníbal José Sarotto, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

María Agustina Toscanini, Instituto NANOBIOTEC (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Instituto NANOBIOTEC (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Daniela Contartese, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Verónica B. Dorfman, Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Autonomous City of Buenos Aires, Argentina

Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico (CEBBAD), Universidad Maimónides, Autonomous City of Buenos Aires, Argentina

Ronan Nakamura, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Micaela Besse, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Ignacio M. Larráyoz, Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain

Biomarkers and Molecular Signaling Group, Center for Biomedical Research of La Rioja, Logroño, Spain

Alfredo Martínez , Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain

Angiogenesis Study Group, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain

Elena De Matteo, Pathology Service, Hospital de Niños “Ricardo Gutiérrez” (UBA - CONICET), Autonomous City of Buenos Aires, Argentina

Pathology Service, Hospital de Niños “Ricardo Gutiérrez” (UBA - CONICET), Autonomous City of Buenos Aires, Argentina

Manuel Rey-Funes, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

César Fabián Loidl, Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

Laboratorio de Neuropatología Experimental, Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis” (IBCN), Facultad de Medicina, Universidad de Buenos Aires, CONICET, Autonomous City of Buenos Aires, Argentina

References

1. National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. University of
Alabama, Birmingham, Alabama; 2021. Disponible en: https://www.nscisc.uab.edu/public/SCI%20Facts%20and%20Figures%20at%20a%20Glance%20-%202021%20-%20Spanish.pdf

2. Ministerio de Salud de la Nación Argentina. Anuario estadístico nacional sobre discapacidad del año 2013.
Disponible en: https://www.snr.gov.ar/publicacion

3. Dorfman VB, Rey-Funes M, Bayona JC, López EM, Coirini H, Loidl CF. Nitric oxide system alteration at spinal
cord as a result of perinatal asphyxia is involved in behavioral disabilities: hypothermia as preventive treatment. J
Neurosci Res 2009;87(5):1260-9. https://doi.org/10.1002/jnr.21922

4. Loidl CF. Short and long term effects of perinatal asphyxia. Thesis. Netherlands: Maastricht University; 1997.

5. Loidl CF, De Vente J, van Dijk E, Vles SH, Steinbusch H, Blanco C. Hypothermia during or after severe
perinatal asphyxia prevents increase in cyclic GMP-related nitric oxide levels in the newborn rat striatum. Brain
Res 1998;791(1-2):303-7. https://doi.org/10.1016/s0006-8993(98)00195-4

6. Peña M, Rey-Funes M, Sarotto A, Loidl FC. Estudio del patrón migratorio de neuronas corticofrontales que
expresan reelina en la asfixia perinatal experimental. Medicina (Buenos Aires) 2012;72(Supl II) Neurociencias 4 369p. 157. Disponible en: https://medicinabuenosaires.com/demo/revistas/vol72-12/supl-2/53-252-SAIC-Resumenes72-2012.pdf

7. Rey-Funes M, Ibarra ME, Dorfman VB, López EM, López-Costa JJ, Coirini H, et al. Hypothermia prevents
the development of ischemic proliferative retinopathy induced by severe perinatal asphyxia. Exp Eye Res
2010;90(1):113-20. https://doi.org/10.1016/j.exer.2009.09.019

8. Rey-Funes M, Ibarra M, Dorfman VB, Martinez-Murillo R, Martinez A, Coirini H, et al. Hypothermia prevents
nitric oxide system changes in retina induced by severe perinatal asphyxia. J Neurosci Res 2011;89(5):729-43.
https://doi.org/10.1002/jnr.22556

9. Rey-Funes M, Dorfman VB, Ibarra M, Peña E, Contartese DS, Goldstein J, et al. Hypothermia prevents gliosis and angiogenesis development in an experimental model of ischemic proliferative retinopathy. Invest Ophthalmol Vis Sci 2013;54(4):2836-46. https://doi.org/10.1167/iovs.12-11198

10. Rey-Funes M, Contartese DS, Rolón F, Sarotto A, Dorfman VB, Loidl CF. Efecto protector de la hipotermia
en la retinopatía del prematuro (ROP) experimental. Rol de las proteínas inducibles por frío. Arch Argent
Oftalm 2016;(6):45-56. Disponible en: https://archivosoftalmologia.com.ar/index.php/revista/issue/view/17/13

11. Rey-Funes M, Larrayoz IM, Contartese DS, Soliño M, Sarotto AJ, Bustelo M, et al. Hypotermia prevents retinal
damage generated by optic nerve trauma in the rat. Sci Rep 2017;7(1):6966. https://doi.org/10.1038/s41598-017-07294-6

12. Sarotto AJ, Rey-Funes M, Dorfman VB, Contartese D, Larráyoz IM, Martínez A, et al. Expresión de proteínas
inducibles por frío en la médula espinal de rata sometida a hipotermia sistémica. Rev Asoc Argent Ortop
Traumatol 2022;87(3):393-403. https://doi.org/10.15417/issn.1852-7434.2022.87.3.1488

13. Contartese DS, Rey-Funes M, Sarotto A, Dorfman VB, Loidl CF, Martínez A. A hypothermia mimetic molecule
(zr17-2) reduces ganglion cell death and electroretinogram distortion in a rat model of intraorbital optic nerve crush (IONC). Front Pharmacol 2023;14:1112318. https://doi.org/10.3389/fphar.2023.1112318

14. Lo TP, Cho K-S, Garg MS, Lynch MP, Marcillo AE, Koivisto DL, et al. Systemic hypothermia improves histological
and functional outcome after cervical spinal cord contusion in rats. J Comp Neurol 2009;514(5):433-48.
https://doi.org/10.1002/cne.22014

15. Shibuya S, Miyamoto O, Janjua NA, Itano T, Mori S, Horimatsu H. Post-traumatic moderate systemic hypothermia reduces TUNEL positive cells following spinal cord injury in rat. Spinal Cord 2004;42(1):29-34.
https://doi.org/10.1038/sj.sc.3101516

16. Yu CG, Jimenez O, Marcillo AE, Weider B, Bangerter K, Dietrich WD, et al. Beneficial effects of modest systemic
hypothermia on locomotor function and histopathological damage following contusion induced spinal cord injury in rats. J Neurosurg 2000;93(1 Suppl):85-93. https://doi.org/10.3171/spi.2000.93.1.0085

17. Yu WR, Westergren H, Farooque M, Holtz A, Olsson Y. Systemic hypothermia following compression injury
of the rat spinal cord: reduction of plasma protein extravasation demonstrated by immunohistochemistry. Acta
Neuropathol 1999;98(1):15-21. https://doi.org/10.1007/s004010051046

18. Batchelor PE, Skeers P, Antonic A, Wills TE, Howells DW, Macleod MR, et al. Systematic review and metaanalysis of therapeutic hypothermia in animal models of spinal cord injury. PLoS One 2013;8(8):e71317.
https://doi.org/10.1371/journal.pone.0071317.

19. Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited review: Effects of heat and cold stress on mammalian gene
expression. J Appl Physiol (1985) 2002;92(4):17251742. https://doi.org/10.1152/japplphysiol.01143.2001

20. Al-Fageeh MB, Smales CM. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006;397(2):247-59. https://doi.org/10.1042/BJ20060166

21. Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J. A glycine-rich RNA-binding protein mediating
cold-inducible suppression of mammalian cell growth. J Cell Biol 1997;137(4):899-908. https://doi.org/10.1083/jcb.137.4.899

22. Tong G, Endersfelder S, Rosenthal LM, Wollersheim S, Sauer IM, Bührer C, et al. Effects of moderate and deep
hypothermia on RNA-binding proteins RBM3 and CIRP expressions in murine hippocampal brain slices. Brain
Res 2013;1504:74-84. https://doi.org/10.1016/j.brainres.2013.01.041

23. Rey-Funes M, Contartese DS, Peláez R, García-Sanmartín J, Narro-Íñiguez J, Soliño M, et al. Hypothermic shock
applied after perinatal asphyxia prevents retinal damage in rats. Front Pharmacol 2021;12:651599.
https://doi.org/10.3389/fphar.2021.651599

24. Larrayoz IM, Rey-Funes M, Contartese DS, Rolón F, Sarotto A, Dorfman VB, et al. Cold shock proteins are
expressed in the retina following exposure to low temperatures. PLoS One 2016;24;11(8):e0161458.
https://doi.org/10.1371/journal.pone.0161458

25. Young W. Spinal cord contusion models. Prog Brain Res 2002;137:231-55. https://doi.org/10.1016/s0079-6123(02)37019-5

26. Rodrigo J, Peinado MA, Pedrosa A. Avances en inmunocitoquímica y técnicas relacionadas. Jaén: Publicaciones de la Universidad de Jaén; 1996.

27. Rodrigo J, Alonso D, Fernández AP, Serrano J, Richart A, López JC, et al. Neuronal and inducible nitric oxide synthase expresión and protein nitration in rat cerebellum after oxygen and glucose deprivation. Brain Res 2001;909(1-2):20-45. https://doi.org/10.1016/s0006-8993(01)02613-0

28. Wrathall JR. Spinal cord injury models. J Neurotrauma 1992;9(Suppl 1):S129-34. PMID: 1588603

29. Fehlings MG, Tator CH. A review of experimental models of acute spinal cord injury. En: Illis LS (ed.). Spinal
cord dysfunction: assessment. Oxford: Oxford University; 1988, p. 3-43.

30. Parent S, Mac-Thiong JM, Roy-Beaudry M, Sosa JF, Labelle H. Spinal cord injury in the pediatric population: a
systematic review of the literature. J Neurotrauma 2011;28(8):1515-24. https://doi.org/10.1089/neu.2009.1153

31. Kundi S, Bicknell R, Ahmed Z. Spinal cord injury: current mammalian models. Am J Neurosci 2013;4(1):1-12.
https://doi.org/10.3844/ajnsp.2013.1.12

32. Cambria RP, Davison JK. Regional hypothermia for prevention of spinal cord ischemic complications after
thoracoabdominal aortic surgery: experience with epidural cooling. Semin Thorac Cardiovasc Surg 1998;10(1):61-
5. https://doi.org/10.1016/s1043-0679(98)70020-6

33. Bicknell CD, Riga CV, Wolfe JH. Prevention of paraplegia during thoracoabdominal aortic aneurysm repair. Eur J Vasc Endovasc Surg 2009;37(6):654-60. https://doi.org/10.1016/j.ejvs.2009.02.008

34. Dietrich WD III. Therapeutic hypothermia for spinal cord injury. Crit Care Med 2009;37(7 Suppl):S238-S242.
https://doi.org/10.1097/CCM.0b013e3181aa5d85

35. Lleonart ME. A new generation of proto-oncogenes: cold-inducible RNA binding proteins. Biochim Biophys
Acta 2010;1805(1):43-52. https://doi.org/10.1016/j.bbcan.2009.11.001

36. Liao Y, Tong L, Tang L, Wu S. The role of cold-inducible RNA binding protein in cell stress response. Int J
Cancer 2017;141(11):2164-73. https://doi.org/10.1002/ijc.30833

37. Zhang Y, Wu Y, Mao P, Li F, Han X, Zhang Y, et al. Cold-inducible RNA-binding protein CIRP/hnRNP A18
regulates telomerase activity in a temperature-dependent manner. Nucleic Acids Res 2016;44(2):761-75.
https://doi.org/10.1093/nar/gkv1465

38. Torres Montaner A. El cuerpo accesorio de Cajal. Rev Esp Patol 2002;35(4):529-32. Disponible en:
https://www.xn--patologai2a.es/volumen35/vol35-num4/pdf%20patologia%2035-4/35-4-24.pd

39. Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987;7(6):729-38. https://doi.org/10.1038/jcbfm.1987.127

40. Horiuchi T, Kawaguchi M, Kurita N, Inoue S, Nakamura M, Konishi N, et al. The long term effects of mild to
moderate hypothermia on gray and white matter injury after spinal cord ischemia in rats. Anesth Analg 2009;109 (2): 559-66. https://doi.org/10.1213/ane.0b013e3181aa96a1

41. Yu CG, Jagid J, Ruenes G, Dietrich WD, Marcillo AE, Yezierski RP. Detrimental effects of systemic hyperthermia
on locomotor function and histpathological outcome after traumatic spinal cord injury in the rat. Neurosurgery
2001;49(1):152-9. https://doi.org/10.1097/00006123-200107000-00023

42. Bazley FA, Pashai N, Kerr CL, All AH. The effects of local and general hypothermia on temperature profiles of
the central nervous system following spinal cord injury in rats. Ther Hypothermia Temp Manag 2014;4(3):115-24.
https://doi.org/10.1089/ther.2014.0002

43. Badr El-Bialy, Shaimaa Abu Zaid, Nermeen El-Borai, Anis Zaid, Amanallah El-Bahrawy. Hypothermia in rat:
Biochemical and pathological study. Int J Cri For Sci 2017;1(1):22-30. Disponible en:
https://biocoreopen.org/ijcf/Hypothermia-in-Rat-Biochemical-and-Pathological-Study.php

44. Colón JM, González PA, Cajigas Á, Maldonado WI, Torrado AI, Santiago JM, et al. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol 2017;299(Pt A):109-21. https://doi.org/10.1016/j.expneurol.2017.10.006

45. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI, et al. Gene profiling in spinal cord
injury shows role of cell cycle neuronal death. Ann Neurol 2003;53:454-68. https.//doi.org/10.1002/ana.10472

46. Kafka J, Lukacova N, Sulla I, Maloveska M, Vikartovska Z, Cizkova D. Hypothermia in the course of acute
traumatic spinal cord injury. Acta Neurobiol Exp (Wars) 2020;80:172-8. https://doi.org/10.21307/ane-2020-016

47. Anjum A, Da’in Yazid M, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A, et al. Spinal cord injury:
Pathophysiology, multimolecular interactions, and underlying recovery mechanisms. Int J Mol Sci 2020;21(20):7533. https://doi.org/10.3390/ijms21207533.

48. Horn E, Forage J, Sonntag V. Acute treatment of patients with spinal cord injury. Neurologic management. En:
Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA. Rothman-Simeone The spine, 5th ed, Philadelphia:
Saunders Elsevier; 2006, p. 1190.

49. Springer JE, Azbill RD, Knapp P. Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat Med 1999;5(8):943-6. https://doi.org/10.1038/11387

Most read articles by the same author(s)